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Abstract: Diffuse interface descriptions offer many advantages for the modeling of microstructure
evolution. However, the numerical representation of moving diffuse interfaces on discrete numerical
grids involves spurious grid friction, which limits the overall performance of the model in many respects.
Interestingly, this intricate and detrimental effect can be overcome in Finite Difference (FD) and Fast
Fourier Transformation (FFT) based implementations by employing the so-called Sharp Phase-Field
Method (SPFM). The key idea is to restore the discretization induced broken Translational Invariance
(TI) in the discrete phase-field equation by using analytic properties of the equilibrium interface profile.
We proof that this method can indeed eliminate spurious grid friction in the three dimensional space.
Focussing on homogeneous driving forces, we quantitatively evaluate the impact of spurious grid friction
on the overall operational performance of different phase-field models. We show that the SPFM provides
superior degrees of interface isotropy with respect to energy and kinetics. The latter property enables the
frictionless motion of arbitrarily oriented diffuse interfaces on a fixed 3D grid.

Keywords: phase-field modeling; microstructure evolution; grid pinning; grid anisotropy; finite differ-
ences

1. Introduction

Diffuse interface descriptions, such as phase-field models, provide an elegant way of
modeling microstructure evolution involving phase or domain boundary motion. In these
models the diffuse interfaces serve as "smeared out" volumetric surrogates for surface-type
defects. The surface-type defects are carriers of physical access energy and their motion of
is driven by the Gibbs-Thompson effect of reducing the total amount surface energy as well
as other volumetric driving forces. As compared to sharp interface descriptions, the difficult
problem of explicit surface tracking is avoided, which allows for any topological evolution of
the phase or domain structures, such as interface instabilities, shape bifurcations, nonlinear
pattern selection, particle nucleation or dissolution. Phase-field methods are extensively used
in the simulation of complex microstructure evolution problems, such as solidification [1–3],
solid-state transformations [4–8], crack propagation [9–12], ferro-electric domain evolution [13],
grain growth [14–16], as well as many other [17–21].

Quite often, the width of the diffuse interface appears to be the smallest physical length-
scale in the system. Clearly, in order to increase the numerical efficiency in all these cases, one
is interested in choosing the smallest possible numerical width resolution whilst still keeping
the benefits from the diffuse interface description. So far, spurious grid friction or grid pinning
in the phase-field equation has been the major limiting factor in this regard.

For an understanding of what spurious grid friction is, consider an interface between two
phases at different bulk free energy density levels. The level difference, also called the driving
force, induces an interface motion lowering the total free energy of the system by lowering
the volume of the high energy phase. After some transient period of time, a homogeneous
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Figure 1. Illustration of the influence from spurious grid friction on the motion of a constantly driven,
planar interface. a) Comparison of conventional Continuum Field (CF) models for different phase-field
profile resolutions λ̃ = λ/∆x with the Translationally Invariant (TI) model for λ̃ = 0.5 (green curves) b)
The energy density and the interface velocity, as measured during the simulation, is plotted as function of
the advancing interface center c̃n(t) = cn(t)/∆x. The dimensionless driving force is µ̃ = µ∆x/Γ = 0.1.
The CF-model is subject to pinning for the case of λ̃ = 2.0. The logarithmic scale bar on the right shows
how much smaller the relative velocity error for the TI-model is in comparison to those from the CF-model.
An animated version of this figure is provided in the supplementary material.

and time independent driving force should always result in a stationary state with a constant
transformation velocity. The resulting stationary interface velocity υ is proportional to the
driving force, and is exactly prescribed by energy conservation principles.

Fig. 1 illustrates the influence from spurious grid friction on the stationary interface motion.
An animated version of this figure is provided in the supplementary material. We compare
the resulting interface motion for different dimensionless profile resolutions λ̃ = λ/∆x, i.e. the
ratio between the phase-field profile width and the numerical grid spacing. In Fig. 1a) the
phase-field values at different grid points (full symbols) as well as a least square fit of the
profile function Eq. (3) around the interface region are plotted. On the right, in Fig. 1b) the
total interface energy and the fitting value for the phase-field profile width are plotted both as
function of the dimensionless position of the interface center c̃n(t) = cn(t)/∆x, which takes an
integer value whenever a grid point is located in the middle of the interface. For conventional
Continuum Field (CF) type phase-field models the interface propagates with a clearly smaller
average velocity than expected. This indicates a spurious, friction-like loss of energy during
the interface motion. Further, we obtain oscillations in the interface energy and velocity as
the interface center passes one grid point after the other. With decreasing profile resolution,
we obtain increasingly larger drops of the average values as well as increasing oscillation
amplitudes. For the CF-model this culminates in fully destroyed interface kinetics at the profile
resolution λ̃ = 2.0 and below, which is commonly referred to as grid pinning, see yellow
curves in Fig. 1. Grid friction and pinning during stationary interface motion in phase-field
modeling has been studied earlier [22,23]. Please note, that the coupling of the phase-field to a
local bulk energy density difference is prototypical for many advanced phase-field models. In
modeling of microstructure evolution such inhomogeneous driving forces are calculated from
local temperatures [24–26], local concentrations [27–31], local strains [32–34] or combinations
of these [35–38].

Recently, Finel et al. found a strikingly novel and surprisingly simple way to deal with
spurious grid friction in one dimension [39]. The method is conceptually related to previous
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Figure 2. The simulation of stationary interface motion with interface orientations, that differ from the
principal axes of the computational grid.

suggestions to improve the numerical performance of phase-field solvers based on the phase-
field profile function [40–46]. Similar formulations involving the section wise defined sinus like
phase-field profile have been independently proposed by J. Eiken [47]. The key is to restore
the Translational Invariance (TI) in the discretized phase-field equation by using analytical
properties of the phase-field profile function, see Fig 1 green curve. The TI-model, as shown by
the green-curves in Fig. 1, is neither subject to grid friction nor to grid pinning even-though the
phase-field width has been chosen as small as λ/∆x = 0.5. Note, that choosing λ/∆x = 0.5
means that over 96.4 % of the hyperbolic tangent interface profile is resolved by just one grid
point, see Eq. (3).

The aim of this work is to proof that spurious grid friction can be eliminated by the sharp
phase-field method in one dimension as well as in three dimensions. We define test configura-
tions, which allow the comprehensive, quantitative evaluation of the intricate influence from
grid friction effects on the operational performance of different phase-field models within a
unified Finite Difference (DF) framework. The starting point is the stationary interface motion
in one dimension driven by a constant chemical potential density difference. Depending on
modeling details, spurious grid friction and pinning can seriously limit the total parameter
range of reasonable spatial resolution. In the three dimensional case, the interface orientation
relative to the orientation of the computational grid appears as an additional degree of freedom.
Keeping the uniform, cubic computational grid as fixed, we investigate the influence of varying
interface orientations on the stationary motion, see Fig. 2. The realization of this configuration
requires to impose special boundary conditions for the phase-field, which meets the boundary
plains under angles that are different from 0

◦
or 90

◦
. Within this article, we newly propose

suitable boundary conditions for this purpose. Deviations of the resulting interface velocity
from the theoretic expectations reveal the effect of spurious grid friction. We show that the
SPFM can also provide frictionless motion of planar interfaces for arbitrary interface orientation,
even in the case of the very low numerical resolution of the diffuse interface profile. Finally,
we discuss possible grid friction effects on the 3D shape evolution of a single particle within a
matrix phase at constant particle phase volume.

The article is structured as follows: The theoretic aspects of grid friction and how the sharp
phase-field method deals with it is presented in Sec. 2.1. This is followed by the description of
the newly proposed contact angle boundary conditions for the phase-field in Sec. 2.2. In Sec. 2.3,
we discuss a new method for the accurate local measure of the interface center and profile
width by a nonlinear profile interpolation. The presentation and discussion of the results can
be found in Sec. 3. It is started, with the one dimensional study of the effect of grid friction and
grid pinning on the operational limits of different phase-field models, in Sec. 3.1. In Sec. 3.2, we
discuss the case of stationary interface motion with nontrivial interface orientations in the three
dimensional space with the aim to quantitatively evaluate the residual kinetic grid anisotropy
of different phase-field models. Finally, Sec. 3.3 is devoted to the quantitatively evaluation
of the residual energetic grid anisotropy of different phase-field models, by considering the
particle shape evolution toward quasi equilibrium condition at constant phase volumes.
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Table 1. The three different neighboring shells and all related grid directions within the simple cubic
numerical grid. Exemplary determination of the grid coupling parameter set for the TI〈120〉−formulation.

shell j k p −p [120] · p |arctanh(ak)|

1
0 [100] [1̄00] [120] · [100] = 1 4/(

√
5λ)

1 [010] [01̄0] [120] · [010] = 2 2/(
√

5λ)
2 [001] [001̄] [120] · [001] = 0 0

2

3 [110] [1̄1̄0] [120] · [110] = 3 6/(
√

5λ)
4 [011] [01̄1̄] [120] · [011] = 2 4/(

√
5λ)

5 [101] [1̄01̄] [120] · [101] = 1 4/(
√

5λ)
6 [11̄0] [1̄10] [120] · [11̄0] = −1 2/(

√
5λ)

7 [011̄] [01̄1] [120] · [011̄] = 2 2/(
√

5λ)
8 [101̄] [1̄01] [120] · [1̄01] = −1 2/(

√
5λ)

3

9 [111] [1̄1̄1̄] [120] · [111] = 3 6/(
√

5λ)
10 [1̄11] [11̄1̄] [120] · [1̄11] = 1 6/(

√
5λ)

11 [11̄1] [1̄11̄] [120] · [11̄1] = −1 2/(
√

5λ)
12 [111̄] [1̄1̄1] [120] · [111̄] = 3 2/(

√
5λ)

2. Methods
2.1. The Sharp Phase-Field Method (SPFM)

We begin by going through the necessary discretization methods in order to implement
the SPFM computationally. The discretized simulation domain in three dimensions consists of a
uniform, cartesian grid of cubic shape, as is usual for simulations based on the Finite Difference
Method where one is restricted to operating on equispaced, orthogonal grids. We describe
orientations and directions relative to the simple cubic computational grid using a Miller
index notation system, where the three primitive translation vectors, i.e. 〈100〉, conveniently
correspond to the systems orthonormal cartesian basis vectors. The Sharp Phase-Field Method
is based on a discrete Helmholtz free energy functional F

[
φp
]
= ∑p fp∆x3, with a grid spacing

∆x along the principle axes. The discrete Helmholtz free energy density fp associated to the
grid point p is given by

fp =
Γ

CΓλ ∑
k

γjνj

(λ2

2
(∂+k φp)

2 + gk(φp)
)
+ µ h(φp). (1)

where the discrete directional phase-field derivatives, ∂+k φp, are approximated by forward
differencing ∂+k φp ≡ (φp+rk − φp)/|rk| and rk denotes a numerical grid vector connecting
two neighboring grid points along the direction number k. Beside the central grid point p,
the formulation involves grid points on the first three neighboring shells j = 1, 2, 3, with
|rk|j =

√
j∆x, as summarized in Tab. 1. For a given neighboring shell with mj neighboring

nodes, the coefficients νj = 3/mj correct for the multiplicity of the shell. Each of the three
different summations, i.e. j = 1 : k = 0 . . . 2, j = 2 : k = 3 . . . 8 and j = 3 : k = 9 . . . 12, over all
the directions constituting a certain neighboring shell results in an independent approximation
of the continuous phase-field square gradient contribution to the free energy density. The
relative weightings γj of the three different realizations are chosen to get best possible energetic
isotropy [39,48]. All the equilibrium potentials gk(φ) are minimal at φ = 0 and φ = 1. These
states correspond to the two distinct phases of the system. λ denotes the width of the diffuse
interface, Γ is the interface energy density, and CΓ is an interface energy calibration parameter.
A positive bulk free energy density difference µ favors the growth of phase φ = 0 at the expense
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of phase φ = 1. The interpolation function h(φ) has to satisfy h(0) = 0 and h(1) = 1. Further,
a vanishing slope at ∂φh(φ = 0, 1) = 0 is demanded, to keep the local minima of the total
potential energy density at φ = 0 and φ = 1.

The Allen-Cahn equation prescribes the time evolution of the phase-field ∂tφp to be
proportional to the functional derivative of F with respect to the phase-field, i.e. −δφF. We
write [49,50]

3λΓ · ∂tφp = −2MδφF, (2)

where M is a kinetic coefficient comparable to a diffusion coefficient with dimension [M] =
m2s−1. The functional derivative is defined as δφF = ∂φ fp − ∑j,k ∂−k (∂

+
(∂kφ)

fp), where the

second directional derivative, ∂−k , is approximated by backward differencing, i.e. ∂−k
(
∂ fp
)
≡(

∂ fp−rk − ∂ fp
)
/|rk|, and ∂φ ≡ ∂/∂φ abbreviates the partial phase-field derivative φ. The

continuum phase-field Eq. (2) promotes solutions of the form

φp =
1
2

(
1− tanh

2(p · n− cn)

λ

)
, (3)

where n is the unit normal interface vector and cn = υtht denotes the central interface position,
moving with the velocity υth. During the stationary motion of a planar interface, a constant
amount of energy per unit time interval dissipates via the progressing phase transformation.
Thus, total energy conservation dictates the phase transformation rate as well as the interface
velocity to be exactly determined by the driving force µ via υth = −Mµ/Γ. Note, that the phase-
field parameter λ, controlling width of the hyperbolic tangent interface profile, is not uniquely
defined in the literature. Here, λ is defined in such a way that the fraction of tanh 2 ' 0.964 of
the total transition from φ = 0 to φ = 1 happens within the distance of 2λ [16,48].

In equilibrium, i.e. µ = 0→ ∂tφ = 0, the phase-field Eq. (2) reduces to the discrete force
equilibrium condition [48]:

∑
k

γjνj

{
λ2

r2
k
(φp+rk − 2φp + φp−rk )− ∂φgk(φp)

}
=0. (4)

where approximate the laplacian of φ by combining forward and backward differencing to the
second order central difference formula, as is usual within the Finite Differrence Method. Note
that solutions obtained from conventional phase-field implementations do not strictly satisfy
the discrete force equilibrium condition. Not even the ideal solution Eq. (3) strictly satisfies
Eq. (4), if the conventional quartic double well potential g∞

k (φ) = 8φ2(1− φ)2/3 is imposed.
Generally, these violations of the discrete force equilibrium condition become increasingly
severe for small profile resolution numbers.

In Fig 3, we evaluate the degree of satisfaction of the discrete force equilibrium condition
with respect to the ideal profile function (3) for different phase-field models. Therefore, a
phase-field is initialized according to the ideal profile function (3)

such that the interface is located in the middle of the computational domain. The total grid
friction force acting on the ideal interface is given by the system integral over (4). While the
continuum force integral clearly vanishes, the discrete force integral typically oscillates, when
the ideal profile is moved on the computational grid. In Fig. 3, we plot the oscillation amplitude
A of the discrete interface force as a function of the interface orientation for different models.
The conventional Continuum Field (CF) model (dash-dotted curves), as obtained using the
quartic double well potential g∞

k (φ) = 8φ2(1− φ)2/3, provides quite large equilibrium force
oscillations. For λ̃ = 1 (yellow curves) the force oscillations clearly reach order unity, which
indicates that the model cannot be operated at such a small profile resolution. The situation
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Figure 3. Logarithmic plot of the oscillation amplitude A of the total grid friction forces, i.e. the system
integral over Eq. (4), using the ideal profile function (3) as a function of the interface orientation angles
ϑ[001] and ϑ[011]. Two different profile resolutions are compared:λ̃=1.0 (yellow curves) and λ̃=3.0 (red
curves). The dash-dotted curves indicate the Continuum Field (CF) model, where no TI is restored. The
thick solid curves indicate the TI〈120〉 model, which uses global grid coupling parameters (5) to restore TI
for interfaces oriented normal to the 〈120〉-directions. The TIn-model (thin curves) restores TI locally in
the direction of the local interface normal n. The system size is 300×1×1.

changes for substantially larger profile resolution numbers, as shown exemplarily by the red
curves in Fig. 3 for the resolution λ̃ = 3.

Interestingly, for a given interface orientation n, we can find a modified equilibrium
potential, which strictly satisfies the discrete equilibrium condition Eq. (4), thus providing zero
grid friction forces for arbitrarily small profile resolution numbers. This modified potential
is derived as follows. The discrete forces equilibrium condition holds, if all k−directional
components are simultaneously satisfied. One individual k−component can be satisfied at any
real time during the propagation of the interface, based on the following addition property,
φp±rk = (1± ak)φp/(1± (2φp − 1)ak), of the ideal phase-field profile function. Therefore, we
have introduced the grid coupling parameters as

ak(n) = tanh
(

2
rk · n

λ

)
. (5)

Inserting this addition property into the force equilibrium condition, we obtain the k−th
component of the derivative of the modified equilibrium potential [48]. Further, integration
leads to the k−th component of the modified equilibrium potential

gk(φ)
r2

k
λ2 = φ(1−φ) +

1−a2
k

4a2
k

ln
( 1−a2

k

1−a2
k(1−2φ)2

)
, (6)

which further satisfies gk(0) = gk(1) = 0 to allow for easy calculation of the total interface
energy (1) using an arbitrary phase-field by Fint(φp) = ∑p fµ=0 [51,52]. In the continuum limit

|rk| → 0, Eq. (6) converges to the conventional Continuum Field potential, g∞
k = 8φ2(1− φ)2,

as shown in Fig 4.
This new potential strictly eliminates grid friction forces only for those ideal profiles having

interface orientations that properly relate to the unit normal vector used to construct the set of
grid coupling parameters defined by Eq. (5). In the last two columns of Tab. 1, we construct a
set of exemplary grid coupling parameters ak(u) based on the unit vector u = (1, 2, 0)T/

√
5

pointing in the [120]−direction of the computational grid. For the usage of the grid coupling
parameters within the sum over the equilibrium potentials Eq. (6), the order or the signs are
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Figure 4. Joint potential energy density, fpot(φ)λ/Γ = gk(φ)/CΓ + µh3(φ)λ/Γ, as a function of the
phase-field φ with vanishing (approx. parabolic curves) and non-vanishing (approx. sigmoid shaped
curves) driving force, for different values of the dimensionless interface width λ̃ = λ/∆x. The equilibrium
potential gk(φ) is given by Eq. (6), and h3(φ) = φ2(3− 2φ).

not important. The final potential value is only determined by the absolute values of the grid
coupling parameters, as given in the last column in Tab. 1. Note that all unit vectors u pointing
in one of the crystallographically equivalent 〈120〉− grid directions, as obtained by all possible
permutations and negations of the components, provide the identical final potential value. In
this regard, the 〈120〉−construction has the advantage that it provides the maximum possible
number of 24 different equivalent lattice directions, since h = 1 6= k = 2 6= l = 0. The resulting
sharp phase-field model, which is constructed from this set of grid coupling parameters, is
denoted as the TI〈120〉−model. The thick solid curves in Fig. 3 show that the TI〈120〉−model
provides vanishing force oscillations for those interface orientations that match any of the
equivalent 〈120〉−numerical lattice directions. However, the grid friction force evaluation in
Fig. 3 also reveals quite narrow interface orientation windows in which the force oscillation
amplitudes are found to be substantially below the level of the CF-model. This highlights the
sensitivity of the method with respect to interface orientations.

In [48], we propose a sharp phase-field model, as denoted by the TIn-model, which uses
locally adaptive grid coupling parameters. These grid coupling parameters are calculated based
on the locally measured interface orientation. Concerning the grid friction force evaluation
shown in Fig. 3, this model (thin curves) provides very small grid friction force oscillations
regardless of the interface orientation and the profile resolution. This already indicates that the
TIn-model eliminates spurious grid friction for arbitrarily oriented planar interfaces in 3D. For
a sufficiently accurate determination of the locally adaptive grid coupling parameters ak(n)
based on the local interface orientation n, the reader is referred to [48].

Within this article, we compare the behavior of different phase-field models with respect to
grid friction effects. All these models have been implemented within a unified Finite Difference
(FD) framework. An overview over all the considered models is given in Tab. 2. The models
basically differ by their choices for the equilibrium potentials gk(φ) and for the interpolation
function h(φ).

The Continuum Field (CF) models are obtained in the limit lim|rk |→0. In this limit the
equilibrium potentials (6) converge to the classical quartic double-well potential g∞(φ) =

8νφ2(1− φ)2/3, and no Translational Invariance is restored. Imposing this potential, we obtain
finite difference implementations for phase-field models, that correspond to conventional
Allen-Cahn type models using a hyperbolic tangent profile. Best possible comparability to
the present sharp phase-field models is reached by employing the same interface energy
calibrated 27 grid point approximation of the Laplace operator in the phase-field equation
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Table 2. Overview over all the considered models constructed within the unified Finite Difference (FD)
framework.

model equilibrium potential interpolation function Calibration

CF+h3
g∞

k (φ) = 8φ2(1− φ)2/3
h3 = φ2(3− 2φ)

CCF
Γ , γ

TI〈hkl〉
jCF+h5 h5 = φ3(10− 15φ + 6φ2)

CF+hAbel hAbel = φ2/(φ2 + (1− φ)2)

TI〈hkl〉 + h3 gk : Eq. (6), ak(u), u ‖ 〈hkl〉 h3 = φ2(3− 2φ)
CTI

Γ , γ
TI〈hkl〉
j

TIn + h3 gk : Eq. (6), ak(n) CTI
Γ , γTIn

j

0.2
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Figure 5. Different interface energy calibration parameters CΓ(λ̃) (solid and dashed green curves) and
ponderation coefficients γ2(λ̃) (solid and dash-dotted violet curves), γ3(λ̃) (solid and dash-dotted blue
curves) as functions of the profile resolution λ̃. γ1 = 1− γ2 − γ3

(6). Different CF-models result from three different choices for for the interpolation function:
(i) the natural interpolation function h3, (i) the most frequently used interpolation function
h5, which provides infinite phase stability and (iii) the broken rational interpolation function
hAbel(φ) = φ2/(φ2 + (1− φ)2).

Translational Invariance (TI) is obtained when the new equilibrium potential, given by
Eq. (6) is imposed in conjunction with the natural interpolation function h3. When the grid
coupling parameters ak in equilibrium potentials are set to the fixed set ak(u) = tanh(2rk · u/λ),
then Translational Invariance is restored for all 〈hkl〉−directions of the computational grid,
with u parallel to one of the 〈hkl〉−directions. These models are denoted as TI〈hkl〉 + h3. A
combination the new equilibrium potentials with other interpolation functions turns out to be
not useful, because the nonequilibrium phase-field profile alternation destroys the carefully
restored Translational Invariance again. In case of the TIn-model, the grid coupling parameters
ak(n) are calculated based on the locally determined interface normal vector n [48]. Then, TI is
restored locally in the local interface normal direction n.

All models have been separately calibrated using the procedure discussed in [48]. The
result of these calibration procedures is a set of profile resolution dependent calibration pa-
rameters CΓ(λ̃) and γj(λ̃) for each model. However, not all of these calibration parameter
functions turn out to be practically different. For instance, the energy calibration parameter
function turns out to be equal for all different sharp phase-field model. The different calibration
parameter functions are illustrated in Fig. 5 and the association to the different models is
explained in the last column of Tab. 2.
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2.2. Contact angle boundary conditions

The simulation of interface propagation in directions other than the 〈100〉−directions
of the computational grid requires special boundary conditions for the phase-field. In these
simulations the interface has to meet the boundaries under a definite contact angle. Here, a
boundary condition for the phase-field, enforcing a given interface orientation angle α with
respect to the boundary plane, is newly proposed and implemented. Physically the condition
can be understood as a wetting angle of droplets on a surface [53,54]. We use the addition
property of the ideal phase-field profile Eq. (3) to impose the profile shift, sn = ∆x sin α, on the
boundary. This shift relates to the angle α and enforces the phase-field to meet the boundary
plane with proper orientation.

The case when a phase front with the interface normal n meets a boundary plane with
direction ek under an angle α is shown in Fig. 6. The interface is visualized by the gray plane,
which relates to the φ = 1/2−contour of the phase-field. The grid points associated with the
computational domain are indicated as colored spheres, with the color denoting the respective
phase-field value. Grid points pb associated with the boundary are indicated as gray spheres.
The boundary value at pb is calculated as

φpb =
(1− ak)φpb+rk

1− ak
(
2φpb+rk − 1

) , (7)

with ak = tanh(2|rk| sin α/λ). The idea behind Eq. (7) is to calculate the boundary value at pb
from the neighboring phase-field value at pb + rk using the addition property of ideal profile
function Eq. (3), and imposing a profile-shift by the length sn = sin α|rk| along the interface
normal direction. Experience from the simulations with different phase-field model has shown
that the accuracy of the proposed contact angle boundary conditions depends on how well the
respective phase-field model reproduces the ideal hyperbolic tangent profile.

2.3. Measure of the interface position and width

A practical way to accurately determine the actual central interface position cn as well as
the current profile width λ for given phase-field simulation results is to fit ideal profile function
(3) to the data using least squares. This could be done, for instance, using the Marquardt-
Levenberg algorithm [48]. However, by practical reasons it is not always possible to determine
these quantities in such an elaborate way. In these cases one would rather like to have an
easy and efficient method which, for instance, just interpolates the central interface position
cn, i.e. the φ = 0.5−contour, based on the known positions and phase-field values at the
neighboring grid points. Note that a simple linear interpolation turns out to be not useful in
the present case. The linear interpolation results are not sufficiently accurate if the phase-field
profile width is small compared to the grid spacing.
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Here, we propose a new nonlinear interpolation technique to calculate the l−contour
position based on the analytic phase-field profile (3). The l−contour position denotes the
interpolated position between two neighboring grid points at the positions p and p + rk,
separated by the lattice vector rk, where the phase-field takes the value φ = l, with the contour-
level l ∈ (0, 1). The two neighboring grid points are located on opposite sides of the l−contour
position along the direction k, such that the following condition

(
φp − l

)
·
(
φp+rk − l

)
≤ 0 is

satisfied. Based on the two different phase-field values φp and φp+rk two different l−contour
positions can be calculated as

xint
p = ek · p +

λ̂k
2

∣∣∣∣arctanh l − φp

2lφp − φp − l

∣∣∣∣, (8)

xint
p+rk

= ek · (p + rk)−
λ̂k
2

∣∣∣∣arctanh l − φp+rk

2lφp+rk − φp+rk − l

∣∣∣∣, (9)

where ek is a unit vector parallel to the direction k and λ̂k = λ/nk denotes the directional
phase-field width, as determined by the phase-field parameter λ and the a priorily unknown
projection nk of the unit normal interface orientation vector onto the k−th direction. Assuming
the two contour positions to be equal xint

p = xint
p+rk

, we obtain an estimation for the directional
phase-field width

λ̂k = 2ek · rk

(∣∣∣∣arctanh l − φp

2lφp − φp − l

∣∣∣∣+ ∣∣∣∣arctanh l − φp+rk

2lφp+rk − φp+rk − l

∣∣∣∣)−1

(10)

This value for the directional phase-field width is inserted into Eqs. (8) and (9). In order to
further regularize and symmetrize the finally interpolated contour position, we impose linear
interpolation, xint

p,rk
= {xint

p+rk
(l − φp) + xint

p (φp+rk − l)}(φp+rk − φp), between the two slightly
different positions at the two neighboring grid points xint

p and xint
p+rk

.

3. Results and discussion
3.1. Frictionless interface motion in 1D

First, we consider the constantly driven motion of a planar interface in one dimension.
After a certain time that depends on model and profile width, the system reaches a stationary
state of motion where the interface velocity is exactly known from energy conservation princi-
ples and is given as υth = −Mµ/Γ. We perform a simulation study with highly comparable
individual simulation runs, with a constant time resolution of Mµ∆t/(Γ∆x) = 1.6 · 10−8. In
all the individual simulation runs the interface center has passed at least a minimum number
of four grid points (corresponds to 2.5 · 108 time steps) even after the system has reached a
stationary state. To reduce the overall computational demands, the whole system is incremen-
tally shifted back by one grid point, whenever the fraction of the energetically favored phase
reaches 50% of the system [55,56]. Then, it is sufficient to resolve the total system by just 50
grid points, which is ten times the maximally employed profile resolution. Please note, that
especially in case of the higher spatial resolution numbers λ̃, µ̃ some models require very long
transient times to relax from the initial ideal profile to the stationary state.

In Fig. 7, we compare average relative interface velocities as well as the stationary oscilla-
tion amplitudes as function of the constant driving force for a number of different models. As
illustrated in Figs. 1b), the oscillation amplitudes are indicated by the transparently colored
areas connected to the solid lines. The colored areas start from the oscillation amplitude value
and end at the mean value. When the colored area is found above the mean value, we encounter
the desirable situation that the measured value oscillates around the theoretic expectation. In
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contrast, colored areas below the mean value denote the undesirable case when the theoretic
expectation is located somewhere outside the oscillation interval.

Fig. 7 shows that all Continuum Field (CF) models are subject to grid pinning for the
profile resolution λ̃ = 2.5 and dimensionless driving forces below µ̃ < 0.02. Due to the absence
of any interface motion in these cases, the mean relative velocity error takes the value 1 and
the measured oscillation amplitude vanishes, resulting in the large colored areas below the
solid lines on the left side in the logarithmic plots. For increasing profile resolutions, the onset
of pinning is shifted towards smaller dimensionless driving forces, as also clearly visible in
Fig. 7. At a profile resolution of λ̃ = 4, we find a limited parameter window of driving forces
in which the mean relative error is minimal and nearly constant at a value of about 2 · 10−2.
This significant residual error at the comparably large profile resolutions λ̃ = 4 indicates the
relevance of spurious grid friction in conventional phase-field modeling. In contrast, the sharp
phase-field model provides very small relative velocity errors and oscillations amplitudes
on the order of the time discretization error for all resolutions λ̃, µ̃ < 1. This indicates that
spurious grid friction and grid pinning is truly eliminated in the one dimensional sharp phase
field model.

We further discuss the application of large dimensionless driving forces or small interface
energy densities. Even-though quite often disregarded, limitations with respect to large
dimensionless driving forces exist in any phase-field model and denote a relevant restriction
of the general applicability of these models. In all kinds of diffuse interface descriptions the
interface energy area density Γ is somehow distributed over the localized volume covered
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by the diffuse interface. Then, the morphological changes due to the interface energy, i.e. the
so-called capillary forces, are modeled by a volume density equivalent, which is inversely
proportional to the width of the diffuse interface. The wider the diffuse interface is chosen, the
smaller the volume density equivalent of the interface energy is. Therefore, large dimensionless
driving forces are the natural consequence of coarse graining or up-scaling of simulations. An
important example is the simulation of dendritic solidification, which involves small capillary
lengths and large diffusion lengths, resulting in small dendritic tip radii as well as medium
secondary- and large primary dendrite arm spacings [56–58]. A less complex example is the
study of the development of interface instabilities, such as the diffusional Mullins-Sekerka-[59]
or the elastic Asaro-Tiller-Grinfeld instability [60–63]. Both require the interface energy to be
comparably small.

Naturally, the choice of the interpolation function is gaining more importance at large
dimensionless driving forces. First, we consider the case of imposing the natural interpolation
function: h3(φ) = φ2(3− 2φ) [39,62,64]. In this case the ideal phase-field profile Eq. (3) remains
an analytic solution of the phase-field Eq. (2) even at finite driving forces. Then the maximal
possible driving force is given by the condition of phase stability. Phase stability demands
the driving force to be small enough to guarantee meta-stability of the high energy phase:
The two local minima of the potential energy density at φ = 0, 1 have to be separated by a
(local) maximum in between. For the CF+h3-model, phase stability requires the dimensionless
driving force to be below ˜|µ| < 8/(3CCF

Γ λ̃), with µ̃ = µ∆x/Γ and λ̃ = λ/∆x. The TI+h3-model
provides a profile resolution dependent phase stability limit, which nicely reflects the behavior
of model [48].

Changing the interpolation function can provide phase stability for larger driving forces.
One example is the interpolation function hAbel(φ) = φ2/(φ2 + (1− φ)2), which has been
first proposed by Abel et al. [26]. The advantage of this interpolation function is that a
thermodynamically consistent extension to the case of multiple phases is comparably easy
[65,66]. With regard to the condition of phase stability, we obtain a maximally possible driving
force for this interpolation function of |µ̃| < 440/(3CCF

Γ λ̃). An even more common choice for
the interpolation function is h5 = φ3(10− 15φ+ 6φ2) (see e.g. [20,29,67–69]). The CF+h5-model
even provides phase stability for infinitely large driving forces, which is of course a highly
desirable property. However, using interpolation functions other than the natural one leads to
altered nonequilibrium phase-field profiles.

The profile alternation grows with increasing driving force. Stronger alternations in turn
also lead to stronger grid friction effects. For large dimensionless driving forces, the two
CF-models h5 and hAbel are both limited by grid friction, while the two h3-models are limited
by the condition of phase stability. Neither the use of h5 nor that of hAbel is useful in the sharp
phase-field model, as the altered nonequilibrium profile destroys any restored Translational
Invariance.

In the lower part of Fig. 7, the parameter ranges of reasonable spatial resolution are
evaluated for each of the different models. A model is set to be reasonably spatially resolved,
when the relative velocity error during constantly driven interface motion is found to be less
than 0.1. While, the CF models cannot reasonably operate at profile resolutions below 2, the
sharp phase-field model can. For very small profile resolutions, the sharp phase-field model
provides surprisingly high limits of phase stability [48].

3.2. Frictionless interface motion in 3D

A phase-field model can be anisotropic with respect to interface kinetics as well as interface
energetics. Here, we investigate both effects separately. The residual kinetic anisotropy is
studied by considering the constantly driven stationary motion of planar interfaces with
varying interface orientations n. In a stationary system state, the interface normal velocity is
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exactly determined by energy conservation principles υth
n = −Mµ/Γ. Within the fixed cartesian

grid comprised of 120× 10× 10 equispaced grid points, differently oriented interfaces meet
the cubic domain boundaries under specific angles. This requires the employment of the
special boundary conditions for the phase-field, as discussed in section 2.2. The different
interface orientations n result from continuous rotations around the two different axes [001]
and [011], as sketched on top of the plot in Fig. 8. The respective rotation angles between the
interface normal direction and the x−direction, i.e. the [100]−direction, are denoted by ϑ[001]
and ϑ[011], respectively. To evaluate the degree of isotropy of the interface kinetics, we perform
a simulation study consisting of many highly comparable individual simulations with an equal
x−component of the interface velocity υth

x for all individual simulations. Therefore, the imposed
driving forces are chosen to decrease with increasing orientation angles, i.e. µ = µ0 cos(ϑ)
with µ̃0 = ∆xµ0/Γ = 0.1, and a time discretization of Mµ0∆t/(Γ∆x) = 10−6. Running each
individual simulation for at least 5 · 106 time steps ensures that the interface center has passed
at least five grid points along the [100]−direction.

In Fig. 8, we compare the orientation dependent error (mean value as well as oscillation
amplitude) in the interface velocity for different phase-field models. The relative mean errors
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are depicted by the solid lines and the relative oscillation amplitudes are visualized as colored
areas, as has been previously illustrated on the right hand side of Fig. 1b).

The black curves shows the results from the Continuum Field (CF) model. Only for the
profile resolution λ̃ = 4, the CF-model is not subject to pinning. Note that the vanishing force
oscillations at the profile resolutions λ̃ = 1 and λ̃ = 0.5 have been omitted in Fig. 8 for the
CF-model. Even for a profile resolution as large as λ̃ = 4 the CF-model is still characterized by
a significant kinetic anisotropy of about 3%, which is on the scale of the mean relative error in
the interface velocity.

All the sharp phase-field models are more accurate in this regard, in some configurations
even by more than an order of magnitude. For a profile resolution of λ̃ = 4, none of these
models is subject to a kinetic anisotropy larger than 0.1%. However, similar to the onset of
grid pinning this situation quickly changes when the profile resolution is decreased. The
TI〈hkl〉-models denote sharp phase-field models with a restored the Translational Invariance
(TI) in the 〈hkl〉−directions, as also discussed in Sec. 2.1. As expected, for interface orientations
close to the directions of restored translational invariance, we obtain extremely small errors in
the interface velocity. However, already slightly misoriented interfaces propagate at velocities
that are clearly below the expectation. The resulting errors in the interface velocity indicate the
existence of finite grid friction effects during the stationary interface motion in these directions.
Even spurious grid pinning is observed at the profile resolutions λ̃ = 1 and λ̃ = 0.5 for interface
orientations in the vicinity of the [100]−direction or less pronounced in the [110]−direction for
the most of the TI〈hkl〉-models, as clearly visible in Fig. 8.

The green curves in Fig. 8 show the behavior of the TIn-model, where the TI has been
locally restored in the local direction of interface motion. This provides very accurate in-
terface velocities for all orientations, even if the phase-field width is chosen to be as small
as λ̃ = 0.5. The resulting velocity error is basically given by the residual error in the time
discretization. This observation indicates that this model indeed provides frictionless motion
of planar interfaces with arbitrary orientations in the three dimensional space.

It should be noted that the TI〈hkl〉-models differ from the original 3D sharp phase-field
model purposed by Finel in some respects [39]. We use a Finite Difference (FD) implementation
that operates on a simple cubic computational grid, whereas the 3D sharp phase-field model
is formulated on a fcc grid using a spectral FFT-based solver. Both aspects are expected to
significantly influence the modeling behavior with regard to the present investigation on the
residual anisotropy profile of the interface kinetics.

3.3. Interface energy driven shape relaxation

To quantify the residual grid anisotropy of the interfacial energy, we consider the shape
evolution of a single particle towards the quasi equilibrium state under constant particle
volume [33,51,70,71]. The 3D simulations of size 60× 60× 60 are started with an initially
cubic particle, as shown in the inset of Fig. 9a). During the simulation, a homogeneous and
time dependent driving force is imposed, such that the integral volume of the particle neither
shrinks nor grows [49,50,72]. The shape evolution of the particle is driven by the minimization
of the total interface energy. Fig. 9a) shows the relaxation of the particles total interface energy
as a function of the simulation time during the shape evolution. It rapidly approaches a distinct
shape that reflects the effective interface energy anisotropy. In case of a fully isotropic model,
the resulting equilibrium shape will be an ideal sphere. Thus, the residual interface energy
anisotropy is defined as the deviation of the resulting equilibrium shape from the shape of an
ideal sphere.

The residual interface energy anisotropy of a certain phase-field model operating at a
certain profile resolution λ̃ is evaluated from the finally relaxed phase-field at the end of
the respective simulation. The anisotropy is evaluated from nonlinearly interpolated φ =
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Figure 9. Investigation of the residual energetic anisotropy by interface energy relaxation of an initially
cubic particle at constant particle volume. a) Total interface energy as a function of the simulation time.
b) Anisotropy εeff = (Rmax − Rmin)/2Rmean of the final quasi equilibrium phase-fields as a function of
the phase-field width λ̃ for different phase-field models. Insets: Phase-field contours together with their
sphericity errors plotted as color-value. For λ̃ = 1.8 the extended error-range of is plotted aside the inset.

1/2−contour points. The nonlinear interpolation of contour positions based on a given phase-
field, is described in section 2.3. For each contour position we calculate its distance from the
particles barycenter Ri and divide this by the mean radius Rmean. This ratio is called the local
sphericity error and is provided as the color value in the contour-plots of the quasi equilibrium
shapes shown in Fig. 9b). Finally, the overall residual anisotropy of this particular simulation is
given by εeff = (Rmax − Rmin)/2Rmean, where Rmin and Rmax denote the smallest and largest
distance between the φ = 1/2−contour positions and the particle’s barycenter, respectively.

Fig. 9b) shows the evaluation of the residual interface energy anisotropy as a function
of the profile resolution λ̃ for different phase-field models. For the largest profile resolution
λ̃ = 4 all models show very small residual anisotropies with sphericity errors below 3 · 10−4.
Already at profile resolutions of λ̃ = 2 and below the Continuum Field (CF) model provides
the highest sphericity errors of the quasi equilibrium particle shape due to the onset of pinning.
The partially pinned particle contours for the cases λ̃ = 2 and λ̃ = 1.8 are exemplarily shown
as insets in Fig. 9b). For profile resolutions below 1.3, larger anisotropies due to spurious grid
pinning is also observed using the TI〈hkl〉-models, especially in the generic cases, when the faces
of the initial cube are not accidentally aligned with the directions of restored TI. The residual
interface energy anisotropies obtained for the TIn-model are generally very low but, of course,
gradually increase with decreasing profile resolution, leading to maximal sphericity errors of
2.0 % for λ̃ = 0.4 or 3.0 % for λ̃ = 0.35.

4. Conclusion

The intricate effects of spurious grid friction, grid pinning and grid anisotropy limit the
performance of conventional phase-field models in many ways. To large extends, these limi-
tations can be overcome by the Sharp Phase-Field Method (SPFM) [39,48]. We quantitatively
evaluate the operational limits of different phase-field models with and without the SPFM
within a unified finite difference framework. An overview of all the different models, consid-
ered in this work, is given in Tab. 2. The operational limits of the models are defined as the
borders in the parameter space separating reasonable from erroneous model behavior. The
parameter space of interest is spanned by the dimensionless driving force µ̃ = µ∆x/Γ and the
dimensionless profile resolution λ̃ = λ/∆x. The key results and findings of this work can be
summarized as follows:
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• Spurious grid friction is studied by means of simulations of stationary interface motion
in one dimension, as shown in Fig. 7. In the limit of small driving forces all CF-models
are limited by grid pinning, while the sharp phase-field model is entirely free of this
effect. With respect to the important case of large dimensionless driving forces all models
involving the natural interpolation function h3 are limited by the condition of phase
stability. The other models are limited by spurious grid friction due to increasingly
stronger alternations of the phase-field profile.

• The residual kinetic anisotropy of the models is evaluated by systematic variations of the
interface orientation within the 3D simulation of constantly driven interface motion. When
imposing a one-grid-point interface resolutions as small as λ̃ = 0.5 a high degree of kinetic
isotropy can only be obtained by employing models which locally restore Translational
Invariance (TI) in the local direction of interface motion. The global restoration of TI in
fixed directions provides substantial kinetic anisotropies already at dimensionless profile
resolutions of λ̃ = 1.0, as shown in Fig. 8.

• The residual anisotropy of the interfacial energy is evaluated by means of a shape relax-
ation simulation of one initially cubic particle in a system under the constraint of a constant
particle volume. Fig. 9 shows the evaluation of the sphericity of the quasi equilibrium
particle shapes as a function of the phase-field profile resolution for different phase-field
models. In any case, the different sharp phase-field models provide substantially lower
energetic anisotropies as compared to the conventional CF-model. However, for profile
resolutions below λ̃ < 1.3 grid pinning is observed in unlucky cases using models with a
global restoration of TI in fixed lattice directions. The TIn-model reliably provides very
small residual interface energy anisotropies.
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The following abbreviations are used in this manuscript:
SPFM Sharp Phase-Field Method
CF Continuum Field
TI Translational Invariance
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FFT Fast Fourier Transformation

Appendix A

Supplementary information is available for this manuscript:

1. Supplementary_material_1_Pinning_animation.mpg: This movie is an animated ver-
sion of Figure 1. It illustrates the influence of spurious grid friction and grid pinning
on the motion of a planar interface in one dimension. We compare the behavior of the
conventional phase-field formulation for different phase-field widths λ/∆x with the
behavior of the sharp phase-field model (green curves).
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2. Supplementary_material_2_Steady_state_interface_motion.mpg: This movie is an
animated visualization of the evolution of the phase-field during the simulation of sta-
tionary motion of a planar interface with propagates under an angle of ϑ[011] = 30◦ with
respect to the computational grid using the TIn model with λ̃ = 0.6.

3. Supplementary_material_3_ContactAngleBC.mpg: This movie illustrates the function
of the newly proposed boundary conditions. They enforce a finite contact angle between
the interface normal and the boundary plane. In this movie, we show a simulation of the
shape-evolution of an initially cubic particle toward its spherical equilibrium shape under
conserved phase volume. The particle is in contact with the bottom boundary, where a
contact angle of 80° with respect to the boundary plane is enforced.
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