

Modelling of microstructures during in-situ alloying in additive manufacturing for efficient material qualification processes

Patrick Zimbrod and Johannes Schilp

Digital Manufacturing Faculty of Applied Computer Science University of Augsburg

15th September 2021

Conclusion

Outline

Introduction

Theory and Methods

Results

Conclusion

Theory and Methods

Results

Conclusion

Material qualification in metal-additive manufacturing

 Empirical material qualification is usually costly and tedious

Theory and Methods

Results

Conclusion

Material qualification in metal-additive manufacturing

- Empirical material qualification is usually costly and tedious
- Though still the way of preference due to lack of viable alternatives

Theory and Methods

Result: 000 Conclusion

Material qualification in metal-additive manufacturing

- Empirical material qualification is usually costly and tedious
- Though still the way of preference due to lack of viable alternatives
- Final morphology of microstructure is essential for mechanical performance

Universität Int Augsburg o

Introduction

Theory and Methods

Results

Conclusion

Material qualification in metal-additive manufacturing

- Empirical material qualification is usually costly and tedious
- Though still the way of preference due to lack of viable alternatives
- Final morphology of microstructure is essential for mechanical performance
- Simulation can help, but requires careful attention and tuning

In-situ alloying

 Process of fusing and mixing elemental powder feedstock during melting

In-situ alloying

- Process of fusing and mixing elemental powder feedstock during melting
- No previous alloying steps necessary

Introduction

Theory and Method

Results

Conclusion

Modelling of microstructures during in-situ alloying in additive manufacturing for efficient material qualification processes

In-situ alloying

Universität

- Process of fusing and mixing elemental powder feedstock during melting
- No previous alloying steps necessary

Introduction

000

Greatly improves feedstock flexibility and thus facilitates material gualificataion

In-situ alloying

Universität

- Process of fusing and mixing elemental powder feedstock during melting
- No previous alloying steps necessary

000

- Greatly improves feedstock flexibility and thus facilitates material gualificataion
- At the cost of potential local inhomogeneities and hard-to-predict microstructure

Introduction

Modelling of microstructures during in-situ alloving in additive manufacturing for efficient material gualification processes

In-situ alloying

- Process of fusing and mixing elemental powder feedstock during melting
- No previous alloying steps necessary
- Greatly improves feedstock flexibility and thus facilitates material qualificataion
- At the cost of potential local inhomogeneities and hard-to-predict microstructure

How can this favorable process be modelled, considering the additional model complexity?

Theory and Methods

$$\mathcal{F} = \iiint_{\Omega} \{\underbrace{f(\phi, C_j, \mu_j, T)}_{\text{energy density}} + \underbrace{\frac{\alpha^2}{2} \Gamma(|\nabla \phi|, \theta - \psi)}_{\text{Dendritic anisotropy}} + \underbrace{sg(\phi)|\nabla \theta|}_{\text{grain growth}} + \underbrace{\frac{\epsilon^2}{2} h(\phi)|\nabla \theta|^2}_{\text{grain boundary motion}} dV$$
(1)

$$\mathcal{F} = \iiint_{\Omega} \{\underbrace{f(\phi, C_j, \mu_j, T)}_{\text{energy density}} + \underbrace{\frac{\alpha^2}{2} \Gamma(|\nabla \phi|, \theta - \psi)}_{\text{Dendritic anisotropy}} + \underbrace{sg(\phi)|\nabla \theta|}_{\text{grain growth}} + \underbrace{\frac{\epsilon^2}{2}h(\phi)|\nabla \theta|^2}_{\text{grain boundary motion}} dV$$
(1)

$$\mathcal{F} = \iiint_{\Omega} \{\underbrace{f(\phi, C_j, \mu_j, T)}_{\text{energy density}} + \underbrace{\frac{\alpha^2}{2} \Gamma(|\nabla \phi|, \theta - \psi)}_{\text{Dendritic anisotropy}} + \underbrace{sg(\phi)|\nabla \theta|}_{\text{grain growth}} + \underbrace{\frac{\epsilon^2}{2} h(\phi)|\nabla \theta|^2}_{\text{grain boundary motion}} dV$$
(1)

$$\mathcal{F} = \iiint_{\Omega} \{\underbrace{f(\phi, C_j, \mu_j, T)}_{\text{energy density}} + \underbrace{\frac{\alpha^2}{2} \Gamma(|\nabla \phi|, \theta - \psi)}_{\text{Dendritic anisotropy}} + \underbrace{sg(\phi)|\nabla \theta|}_{\text{grain growth}} + \underbrace{\frac{\epsilon^2}{2}h(\phi)|\nabla \theta|^2}_{\text{grain boundary motion}} dV$$
(1)

$$\mathcal{F} = \iiint_{\Omega} \{\underbrace{f(\phi, C_j, \mu_j, T)}_{\text{energy density}} + \underbrace{\frac{\alpha^2}{2} \Gamma(|\nabla \phi|, \theta - \psi)}_{\text{Dendritic anisotropy}} + \underbrace{sg(\phi)|\nabla \theta|}_{\text{grain growth}} + \underbrace{\frac{\epsilon^2}{2} h(\phi)|\nabla \theta|^2}_{\text{grain boundary motion}} dV$$
(1)

Basic thermodynamic description of the system: Helmholtz functional \mathcal{F} :

$$\mathcal{F} = \iiint_{\Omega} \{\underbrace{f(\phi, C_j, \mu_j, T)}_{\text{energy density}} + \underbrace{\frac{\alpha^2}{2} \Gamma(|\nabla \phi|, \theta - \psi)}_{\text{Dendritic anisotropy}} + \underbrace{sg(\phi)|\nabla \theta|}_{\text{grain growth}} + \underbrace{\frac{\epsilon^2}{2} h(\phi)|\nabla \theta|^2}_{\text{grain boundary motion}} dV$$
(1)

Substitute a thermochemical sub-model for $f(\phi, C_j, \mu_j, T)$:

$$f(\phi, C_j, T) = \sum_{j=1}^{N} C_j[\mu_j(\phi, T) + RT \ln(\frac{C_j}{\rho})]$$
(2)

Universität Augsburg University

The Phase Field Method

By taking the variational derivative, we obtain conservation equations for the model variables, e.g. for orientation:

$$\frac{\delta \mathcal{F}}{\delta \theta} = P(\epsilon |\nabla \theta|) \tau_{\theta} \phi^2 \frac{\partial \theta}{\partial t} - \nabla \cdot \left[\phi^2 \left(\frac{s}{|\nabla \theta|} + \epsilon^2 \right) \nabla \theta \right]$$
(3)

Universität Augsburg University

The Phase Field Method

By taking the variational derivative, we obtain conservation equations for the model variables, e.g. for orientation:

$$\frac{\delta \mathcal{F}}{\delta \theta} = P(\epsilon |\nabla \theta|) \tau_{\theta} \phi^2 \frac{\partial \theta}{\partial t} - \nabla \cdot \left[\phi^2 \left(\frac{s}{|\nabla \theta|} + \epsilon^2 \right) \nabla \theta \right]$$
(3)

This leads to a system of 8 coupled conservation equations in form of nonlinear PDEs (Phase, Orientation, Temperature, Concentrations) for a 5-component system. Universität Augsburg University

The Phase Field Method

By taking the variational derivative, we obtain conservation equations for the model variables, e.g. for orientation:

$$\frac{\delta \mathcal{F}}{\delta \theta} = P(\epsilon |\nabla \theta|) \tau_{\theta} \phi^2 \frac{\partial \theta}{\partial t} - \nabla \cdot \left[\phi^2 \left(\frac{s}{|\nabla \theta|} + \epsilon^2 \right) \nabla \theta \right]$$
(3)

- This leads to a system of 8 coupled conservation equations in form of nonlinear PDEs (Phase, Orientation, Temperature, Concentrations) for a 5-component system.
- Another established method to solve this problem is the multiphase field method. However, we would end up with at least 11 coupled equations to be solved.

The Phase Field Method

By taking the variational derivative, we obtain conservation equations for the model variables, e.g. for orientation:

$$\frac{\delta \mathcal{F}}{\delta \theta} = P(\epsilon |\nabla \theta|) \tau_{\theta} \phi^2 \frac{\partial \theta}{\partial t} - \nabla \cdot \left[\phi^2 \left(\frac{s}{|\nabla \theta|} + \epsilon^2 \right) \nabla \theta \right]$$
(3)

- This leads to a system of 8 coupled conservation equations in form of nonlinear PDEs (Phase, Orientation, Temperature, Concentrations) for a 5-component system.
- Another established method to solve this problem is the multiphase field method. However, we would end up with at least 11 coupled equations to be solved.
- Since we now track concentrations additionally, we need the respective chemical potentials $\mu_j(\phi, T)$ as input. How can we obtain those?

Theory and Methods

Results

Conclusion

The CALPHAD Method

Universität

Augsburg

University

 CALPHAD (Calculation of Phase Diagrams) is a method to obtain thermodynamic information based on experimental data

Theory and Methods

Results

Conclusion

The CALPHAD Method

Universität Augsburg

University

- CALPHAD (Calculation of Phase Diagrams) is a method to obtain thermodynamic information based on experimental data
- Thus relies on valid, empirical databases

Theory and Methods

Results

Conclusion

The CALPHAD Method

Universität Augsburg

Iniversit

- CALPHAD (Calculation of Phase Diagrams) is a method to obtain thermodynamic information based on experimental data
- Thus relies on valid, empirical databases
- Analytical assembly of mixture properties and configuration spaces, e.g. for Gibbs energy from two phases A and B:

$$G_m = x_A G_A + x_B G_B + x_A x_B L_{AB} + RT(x_A \ln x_A + x_B \ln x_B)$$

(4)

Theory and Methods

Results

Conclusion 00

The Overall ICME Workflow

Universität Augsburg University

UN

Theory and Methods

Results

Conclusion

The Overall ICME Workflow

Universität Augsburg University

Theory and Methods

Results

Conclusion

The Overall ICME Workflow

Universität Augsburg University

UN

Theory and Methods

Results

Conclusion

The Overall ICME Workflow

Universität Augsburg University

UN

Theory and Methods

Results

Conclusion

The Overall ICME Workflow

Universität Augsburg University

UN

Results

Universität Introduction Augsburg 000

Theory and Methods

Results

Conclusion

CALPHAD simulation of the CoCrFeMnNi system

 We sample the configuration space of the equiatomic system with 6 possible phases in total

Theory and Methods

Results

Conclusion

CALPHAD simulation of the CoCrFeMnNi system

We sample the configuration space of the equiatomic system with 6 possible phases in total

Universität

Augsburg

Iniversit

 There is a strong dependence of chemical potential upon the present temperature range

roduction

Theory and Methods

Results

Conclusion

CALPHAD simulation of the CoCrFeMnNi system

 We sample the configuration space of the equiatomic system with 6 possible phases in total

Universität

Augsburg

Iniversity

- There is a strong dependence of chemical potential upon the present temperature range
- Small kinks in the gradient between 1100 K and 1300 K indicate corresponding phase changes

Theory and Methods

Results

Conclusion

Transient phase field simulation

• We use the Finite Volume Method on a 100 x $100 \,\mu\text{m}$ grid with $\Delta x = 0.25 \,\mu\text{m}$, $\Delta t = 0.5 \,\text{ms}$ and $\Delta T = 100 \,\text{K}$

Theory and Methods

Results

Conclusion

Transient phase field simulation

- We use the Finite Volume Method on a 100 x $100 \,\mu\text{m}$ grid with $\Delta x = 0.25 \,\mu\text{m}$, $\Delta t = 0.5 \,\text{ms}$ and $\Delta T = 100 \,\text{K}$
- Nuclei grow from randomly instantiated sites with 4-fold anisotropy

Theory and Methods

Results

Conclusion

Transient phase field simulation

- We use the Finite Volume Method on a 100 x $100 \,\mu\text{m}$ grid with $\Delta x = 0.25 \,\mu\text{m}$, $\Delta t = 0.5 \,\text{ms}$ and $\Delta T = 100 \,\text{K}$
- Nuclei grow from randomly instantiated sites with 4-fold anisotropy
- Grains impinge and form irregular structures

Universität

Theory and Methods

Results

Conclusion

Transient phase field simulation

- We use the Finite Volume Method on a 100 x $100 \,\mu\text{m}$ grid with $\Delta x = 0.25 \,\mu\text{m}$, $\Delta t = 0.5 \,\text{ms}$ and $\Delta T = 100 \,\text{K}$
- Nuclei grow from randomly instantiated sites with 4-fold anisotropy
- Grains impinge and form irregular structures
- Final structure further evolves through grain coarsening and rotation

Conclusion

Conclusions

Summary

- We proposed a framework to capture the evolution of microstructure during in-situ alloying
- Lengthy and costly empirical qualification efforts can be partially replaced
- Digital workflow can save material, manual labor and lab efforts

Conclusions

Summary

- We proposed a framework to capture the evolution of microstructure during in-situ alloying
- Lengthy and costly empirical qualification efforts can be partially replaced
- Digital workflow can save material, manual labor and lab efforts

Outlook

- Improve on computing performance There are better numerical methods than Finite Volume with regards to parallelizability
- Work on coupling with thermo-fluid-dynamic submodel for temperature input, i.e. field transfer from existing self-developed OpenFOAM solver

Theory and Methods

Results

Conclusion

Thank you!

Questions?

Results

Conclusion

Computational effort

Hardware Setup

- Intel Xeon W-2295: 18C/36T @ 3.00 GHz
- 128 GB RAM

Resource Consumption

	CALPHAD	Phase Field
Parallelization Solution time	None 10 s	OpenMPI 200 min
Memory usage	30 MB	2.5 GB