
Introduction Theory and Methods Results Conclusion

Modelling of microstructures during in-situ alloying in additive

manufacturing for efficient material qualification processes

Patrick Zimbrod and Johannes Schilp

Digital Manufacturing
Faculty of Applied Computer Science

University of Augsburg

15th September 2021

Modelling of microstructures during in-situ alloying in additive manufacturing for efficient material qualification processes 1



Introduction Theory and Methods Results Conclusion

Outline

Introduction

Theory and Methods

Results

Conclusion

Modelling of microstructures during in-situ alloying in additive manufacturing for efficient material qualification processes 2



Introduction



Introduction Theory and Methods Results Conclusion

Material qualification in metal-additive manufacturing

◮ Empirical material qualification

is usually costly and tedious

Alloying Powder

atomization

Pre-

Process

Manufacturing

Fe

Cr
V

C

AnalysisParameter

tuning

Modelling of microstructures during in-situ alloying in additive manufacturing for efficient material qualification processes 4



Introduction Theory and Methods Results Conclusion

Material qualification in metal-additive manufacturing

◮ Empirical material qualification

is usually costly and tedious

◮ Though still the way of

preference due to lack of viable

alternatives Alloying Powder

atomization

Pre-

Process

Manufacturing

Fe

Cr
V

C

AnalysisParameter

tuning

Modelling of microstructures during in-situ alloying in additive manufacturing for efficient material qualification processes 4



Introduction Theory and Methods Results Conclusion

Material qualification in metal-additive manufacturing

◮ Empirical material qualification

is usually costly and tedious

◮ Though still the way of

preference due to lack of viable

alternatives

◮ Final morphology of

microstructure is essential for

mechanical performance

Alloying Powder

atomization

Pre-

Process

Manufacturing

Fe

Cr
V

C

AnalysisParameter

tuning

Modelling of microstructures during in-situ alloying in additive manufacturing for efficient material qualification processes 4



Introduction Theory and Methods Results Conclusion

Material qualification in metal-additive manufacturing

◮ Empirical material qualification

is usually costly and tedious

◮ Though still the way of

preference due to lack of viable

alternatives

◮ Final morphology of

microstructure is essential for

mechanical performance

◮ Simulation can help, but

requires careful attention and

tuning
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In-situ alloying

◮ Process of fusing and mixing elemental powder

feedstock during melting

◮ No previous alloying steps necessary

◮ Greatly improves feedstock flexibility and thus

facilitates material qualificataion

◮ At the cost of potential local inhomogeneities

and hard-to-predict microstructure

Fe

Cr V

C

How can this favorable process be modelled, considering the additional
model complexity?
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The Phase Field Method

Basic thermodynamic description of the system: Helmholtz functional F :

F =

∫∫∫

Ω

{f (φ,Cj, µj, T)
︸ ︷︷ ︸

energy density

+
α2

2
Γ(|∇φ|, θ − ψ)

︸ ︷︷ ︸

Dendritic anisotropy

+ sg(φ)|∇θ|
︸ ︷︷ ︸

grain growth

+
ǫ2

2
h(φ)|∇θ|2

︸ ︷︷ ︸

grain boundary motion

dV (1)

Modelling of microstructures during in-situ alloying in additive manufacturing for efficient material qualification processes 7



Introduction Theory and Methods Results Conclusion

The Phase Field Method

Basic thermodynamic description of the system: Helmholtz functional F :

F =

∫∫∫

Ω

{f (φ,Cj, µj, T)
︸ ︷︷ ︸

energy density

+
α2

2
Γ(|∇φ|, θ − ψ)

︸ ︷︷ ︸

Dendritic anisotropy

+ sg(φ)|∇θ|
︸ ︷︷ ︸

grain growth

+
ǫ2

2
h(φ)|∇θ|2

︸ ︷︷ ︸

grain boundary motion

dV (1)

Modelling of microstructures during in-situ alloying in additive manufacturing for efficient material qualification processes 7



Introduction Theory and Methods Results Conclusion

The Phase Field Method

Basic thermodynamic description of the system: Helmholtz functional F :

F =

∫∫∫

Ω

{f (φ,Cj, µj, T)
︸ ︷︷ ︸

energy density

+
α2

2
Γ(|∇φ|, θ − ψ)

︸ ︷︷ ︸

Dendritic anisotropy

+ sg(φ)|∇θ|
︸ ︷︷ ︸

grain growth

+
ǫ2

2
h(φ)|∇θ|2

︸ ︷︷ ︸

grain boundary motion

dV (1)

Modelling of microstructures during in-situ alloying in additive manufacturing for efficient material qualification processes 7



Introduction Theory and Methods Results Conclusion

The Phase Field Method

Basic thermodynamic description of the system: Helmholtz functional F :

F =

∫∫∫

Ω

{f (φ,Cj, µj, T)
︸ ︷︷ ︸

energy density

+
α2

2
Γ(|∇φ|, θ − ψ)

︸ ︷︷ ︸

Dendritic anisotropy

+ sg(φ)|∇θ|
︸ ︷︷ ︸

grain growth

+
ǫ2

2
h(φ)|∇θ|2

︸ ︷︷ ︸

grain boundary motion

dV (1)

Modelling of microstructures during in-situ alloying in additive manufacturing for efficient material qualification processes 7



Introduction Theory and Methods Results Conclusion

The Phase Field Method

Basic thermodynamic description of the system: Helmholtz functional F :

F =

∫∫∫

Ω

{f (φ,Cj, µj, T)
︸ ︷︷ ︸

energy density

+
α2

2
Γ(|∇φ|, θ − ψ)

︸ ︷︷ ︸

Dendritic anisotropy

+ sg(φ)|∇θ|
︸ ︷︷ ︸

grain growth

+
ǫ2

2
h(φ)|∇θ|2

︸ ︷︷ ︸

grain boundary motion

dV (1)

Modelling of microstructures during in-situ alloying in additive manufacturing for efficient material qualification processes 7



Introduction Theory and Methods Results Conclusion

The Phase Field Method

Basic thermodynamic description of the system: Helmholtz functional F :

F =

∫∫∫

Ω

{f (φ,Cj, µj, T)
︸ ︷︷ ︸

energy density

+
α2

2
Γ(|∇φ|, θ − ψ)

︸ ︷︷ ︸

Dendritic anisotropy

+ sg(φ)|∇θ|
︸ ︷︷ ︸

grain growth

+
ǫ2

2
h(φ)|∇θ|2

︸ ︷︷ ︸

grain boundary motion

dV (1)

Substitute a thermochemical sub-model for f (φ,Cj, µj, T):

f (φ,Cj, T) =

N∑

j=1

Cj[µj(φ, T) + RT ln(
Cj

ρ
)] (2)
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The Phase Field Method

◮ By taking the variational derivative, we obtain conservation equations for the

model variables, e.g. for orientation:

δF

δθ
= P(ǫ|∇θ|)τθφ

2∂θ

∂t
−∇ ·

[

φ2

(
s

|∇θ|
+ ǫ2

)

∇θ

]

(3)
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◮ This leads to a system of 8 coupled conservation equations in form of

nonlinear PDEs (Phase, Orientation, Temperature, Concentrations) for a

5-component system.
◮ Another established method to solve this problem is the multiphase field

method. However, we would end up with at least 11 coupled equations to be

solved.
◮ Since we now track concentrations additionally, we need the respective

chemical potentials µj(φ, T) as input. How can we obtain those?
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The CALPHAD Method

◮ CALPHAD (Calculation of Phase Diagrams)

is a method to obtain thermodynamic

information based on experimental data

(4)
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The CALPHAD Method

◮ CALPHAD (Calculation of Phase Diagrams)

is a method to obtain thermodynamic

information based on experimental data

◮ Thus relies on valid, empirical databases

◮ Analytical assembly of mixture properties

and configuration spaces, e.g. for Gibbs

energy from two phases A and B:

Gm = xAGA + xBGB + xAxBLAB + RT(xA ln xA + xB ln xB) (4)
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CALPHAD simulation of the CoCrFeMnNi system

◮ We sample the configuration

space of the equiatomic system

with 6 possible phases in total
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CALPHAD simulation of the CoCrFeMnNi system

◮ We sample the configuration

space of the equiatomic system

with 6 possible phases in total

◮ There is a strong dependence of

chemical potential upon the

present temperature range

◮ Small kinks in the gradient

between 1100 K and 1300 K

indicate corresponding phase

changes
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100 µm grid with ∆x = 0,25 µm, ∆t = 0,5 ms

and ∆T = 100 K

◮ Nuclei grow from randomly instantiated sites

with 4-fold anisotropy

◮ Grains impinge and form irregular structures

◮ Final structure further evolves through grain

coarsening and rotation
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Summary

◮ We proposed a framework to capture the evolution of microstructure during

in-situ alloying

◮ Lengthy and costly empirical qualification efforts can be partially replaced

◮ Digital workflow can save material, manual labor and lab efforts
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Conclusions

Summary

◮ We proposed a framework to capture the evolution of microstructure during

in-situ alloying

◮ Lengthy and costly empirical qualification efforts can be partially replaced

◮ Digital workflow can save material, manual labor and lab efforts

Outlook

◮ Improve on computing performance - There are better numerical methods

than Finite Volume with regards to parallelizability

◮ Work on coupling with thermo-fluid-dynamic submodel for temperature input,

i.e. field transfer from existing self-developed OpenFOAM solver
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Thank you!

Questions?

pzimbrod.github.io
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Computational effort

Hardware Setup

◮ Intel Xeon W-2295: 18C/36T @ 3.00 GHz

◮ 128 GB RAM

Resource Consumption

CALPHAD Phase Field

Parallelization None OpenMPI

Solution time 10 s 200 min

Memory usage 30 MB 2.5 GB
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